/ INDIAL IN L		
Reg.	No.	

(Pages : 2)

B – 4963

Name :

First Semester M.Sc. Degree Examination, January 2017 Branch : Chemistry CH/CL/CA/CM 213 : PHYSICAL CHEMISTRY – I (2016 Admission)

Time : 3 Hours

Max. Marks : 75

SECTION-A

Answer **any two** from **a**, **b**, **c** of each question. **Each** sub-question carries 2 marks. (10×2=20 Marks)

- 1. a) What is meant by the term degeneracy?
 - b) State the significance of Term symbols.
 - c) What is an eigen function ?
- 2. a) What is the uniqueness of enzyme catalysis?
 - b) Give the mathematical expression for Freundlich isotherm.
 - c) Name the different types of surfaces.
- 3. a) State the condition for spontaneity of a process.
 - b) What is the significance of Vant Hoff isochore?
 - c) Give the mathematical expression of Lewis Randall law.
- 4. a) Give the statement of steady state principle.
 - b) What is a consecutive reaction ? Give one example.
 - c) State the Stark-Einstein's law of photochemistry.
- 5. a) Define surface tension of a liquid.
 - b) Calculate the various degrees of freedom in H_2O .
 - c) For oxygen at 25°C, calculate the mean free path at 1 ohm pressure.

P.T.O.

SECTION-B

Answereither a or b of each question. Each question carries 5 marks. (5×5=25 Marks)

- a) Discuss the algebra of operators.
 - b) Write a note on spin orbit coupling.
- 7. a) What is surface potential ? Explain how it is measured.
 - b) Bringout the similarities and differences between physisorption and chemisorption.
- 8. a) Derive the expression for any two Maxwell's relation. State its significance.
 - b) Explain the determination of activity and activity coefficient of electrolytes.
- 9. a) With a neat Jablonski diagram, explain all photophysical processes.
 - b) Consider the following Lindenmann mechanism for the unimolecular decomposition of a molecule A in the presence of an inert gas molecule M.

$$A + A \xrightarrow[k_1]{k-1} A^* + A$$

$$A + M \xrightarrow[k_2]{k-2} A^* + M$$

$$A^* \xrightarrow{k_3} P$$

Applying steady state approximation to A*, derive the rate law for the formation of the product.

- 10. a) Derive the expression for average velocity of molecules.
 - b) Write a note on inter molecular forces.

SECTION-C

Answer any three questions. Each question carries 10 marks. (3×10=30 Mark

- 11. Derive the expression for the energy of a particle in 1 D box.
- 12. Derive the expression for Langmuir adsorption isotherm, thermodynamically and statistically.
- 13. Derive the Gibbs Helmholtz equation and discuss its applications.
- 14. Derive the expression for Eyring equation. State its importance.
- 15. Explain the procedure involved in the determination of surface tension of a liquid.

00100 0000 0000 0000 000	(Pages : 3)	
Reg. No. :		
Name : First Sem	nester M.Sc. Degree Examination, I Branch : Chemistry CH 213 : PHYSICAL CHEMISTRY (2013 Admission Onwards) (Common for CH/CL/CA/CM 213	February 2015 - I 3)
		Max Marks : 75

Time : 3 Hours

ITC

Tha

SECTION - A

Answer **any two** among **a**, **b** and **c** of **each** question. Each sub-question carries 2 marks. (10×2=20 Marks)

- a) Calculate the uncertainty in momentum for an electron confined to one dimensional box of length 1Å.
 - b) Write spectroscopic term symbol for the ground state (i) O atom (ii) d³ system.
 - c) Define spin orbital. Write one example.
- 2. a) Write Schoenflies symbol of point group for (i) CH_2CI_2 (ii) Staggered ethane.
 - b) The essential criteria for chirality is the absence of Sn. Justify the statement.
 - c) Generate matrix for S₃.
- 3. a) Show that $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$.
 - b) What is residual entropy ? Write two examples.
 - c) State and explain Lewis-Randall rule of fugacity.
- 4. a) For the reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, find the steady state concentration of B.
 - b) Explain the term 'adiabaticity' with reference to reaction dynamics.
 - c) How is NMR spectroscopy made use of in the study of fast reactions ? Explain.

8895

-2-

8895

- 5. a) What is the effect of temperature on the distribution of molecular velocities of a gas ? Explain b) What type of information would you get from XRD of liquids ? Explain.
 c) Distribution
 - c) Distinguish between smectic and nematic crystals with examples.

Answer either **a** or **b** of **each** question. **Each** question carries **5** marks. (5×5=25 Marks)

- 6. a) Write kinetic energy operator. Show that it is a Hermitian operator.
 - b) Find the commutator of Lx and Ly.
- 7. a) Using Great Orthogonality theorem, derive reduction formula.
 - b) Derive C_{3V} character table.
- 8. a) Use third law of thermodynamics to show that absolute zero of temperature is unattainable.
 - b) Define fugacity. How would you determine fugacity of a gas?
- 9. a) Show that for a rigid sphere model of bimolecular reaction Absolute Rate Theory agrees with Simple Collision Theory.
 - b) Decomposition of N_2O_5 takes place according to the following mechanism. Derive the rate law.

$$N_2O_5 \xrightarrow{k_1} NO_2 + NO_3$$

$$NO_2 + NO_3 \xrightarrow{k_2} NO + O_2 + NO_2$$

 $NO + NO_3 \xrightarrow{k_4} 2NO_2$

- 10. a) Calculate the viscosity of O_2 at 25°C. The molecular diameter is 3.6 Å.
 - b) How would you determine the vapor pressure of a volatile solid ? Discuss.

SECTION - C

Answer any three questions. Each question carries ten marks. (3×10=30 Marks)

- 11. Apply Schrodinger wave equation for a simple harmonic oscillator. Find eigen functions and eigen values.
- 12. Find hybridized orbitals of B in BF_3 . Use D_3h character table.
- a) Define excess thermodynamic function. Discuss their importance in the properties of binary solutions.
 - b) Write a brief account of the methods for the determination of activity coefficient of nonelectrolytes.
- 14. Briefly discuss Somenoff Herishelwood theory of branching chain reactions.
- 15. Derive Maxwell's distribution of molecular velocities for a 3 dimensional gas

D₃h	E	$2C_3$	3C ₂	σ_{h}	$3\sigma_v$	$2S_3$		
A	1	1	1	1	1	1		$z^2, x^2 + y^2$
A'_2	1	1	·- 1	1	- 1	1	Rz	
E'	2	- 1	0	2	0	-1	(x, y)	$(xy, x^2 - y^2)$
A '' ₁	1	1	1	-1	-1	-1	*	
A''_	1	1	-1	-1	1	-1	Z	
E″	2	1	0	-2	0	1	(xz, yz)	(Rx, Ry)

	State and a state
CHER THE REAL PROPERTY IN	

(Paugine 2)

D - 5653

Reg. No. : analassadaserales construction datases.

First Semester M.Sc. Degree Examination, March 2018 Branch : CHEMISTRY CH/CL/CM/CA 213 - Physical Chemistry - I (2016 Admission Onwards)

Time 3 Hours

Max Marks 75

SECTION - A

Answer any two from a, b, c of each question Each sub-question carries 2 marks.

- a) Calculate the uncertainity product for a moving electron of mass 9.109×10⁻²⁸ g.
 - b) Show that Ψ = sin(k₁x).sin(k₂y).sin(k₃z) is an eigen function of ∇² operator What is the eigen value ?
 - c) State the eigen value postulate of quantum mechanics.
- a) Write Gibbs adsorption isotherm and explain the terms.
 - b) Distinguish between physisorption and chemisorption.
 - c) Outline the principle of X-ray photoelectron spectroscopy.
- 3. a) Explain the term fugacity.
 - b) Calculate the entropy change when an ideal gas expands reversibly and isothermally from an initial volume of 10 dm³ to final volume 100 dm³ at 27°C.
 - c) Explain the significance of Duhem Margules equation.
- a) What is secondary salt effect ?
 - b) Explain the term 'potential energy surface'.
 - c) What are E-type and P-type phosphorescence ?
- a) Write Virial equation of state and explain the terms.
 - b) Find the relation between root mean square velocity and most probable velocity of a gas at a definite temperature.
 - c) Write equation of state for liquids and explain the terms.

(10×2=20 Marks)

P.T.O.

SECTION – B

Answer either a or b of each question. Each question carries 5 marks.

- 6. a) What are Hermitian operators ? Prove that "the eigen functions of a Hermitian operator that operator that are are orthogonal". operator that correspond to different eigen values are orthogonal".
 - b) Write a note on quantum mechanical tunneling.
- 7. a) Provide the statistical derivation of Langmuir adsorption isotherm.
 - b) Explain Langmuir Hinshelwood model of bimolecular surface catalysis.
- 8. a) Explain chemical potential. Predict the influence of temperature and pressure on chemical potential.
 - b) What are excess functions ? Derive expressions for excess free energy and
- 9. a) Briefly explain the relaxation method of studying fast reactions.

 - b) Explain various photophysical phenomena using Jablonski diagram.
- 10. a) Illustrate a typical radial distribution curve of a liquid and explain the
 - b) Explain any one method for determining the surface tension of a liquid.

(5×5=25 Marks)

SECTION - C

Answer any three questions. Each question carries 10 marks.

- 11. Solve the time independent Schrödinger equation of a 1-D simple harmonic oscillator and obtain expressions for the wave function and energy of the
- 12. Derive expression for BET adsorption isotherm.
- 13. Explain any two methods of determining partial molar properties.
- 14. Discuss absolute reaction rate theory.

15. Write notes on :

- i) intermolecular forces and
- ii) relative viscosity determination by Ostwald method.

(3×10=30 Marks)

Reg. No. :	(Pages : 2)	- -	400
Name :			

First Semester M.Sc. Degree Examination, February 2019 Branch : Chemistry/Polymer Chemistry CH/CL/CM/CA/PC 213 - PHYSICAL CHEMISTRY - I (Common for Chemistry) (2016 Admission Onwards) and Polymer Chemistry (2018 Admission)

Time : 3 Hours

Max. Marks : 75

1686

SECTION - A

Answer any two from a, b, c of each question. Each subquestion carries 2 marks. (10×2=20 Marks)

- 1. a) State uncertainty principle and comment on its significance.
 - b) Derive the operator for momentum.
 - c) What is spin-orbit coupling ?
- 2. a) Explain the difference between physisorption and chemisorption.
 - b) Explain the principles of ESCA.
 - c) Briefly explain enzyme catalysis.
- 3. a) Explain Euler's relation.
 - b) State Lewis Randall rule.
 - c) How fugacity and pressure are related ?
- 4. a) What is collision theory ?
 - b) What is the principle of flash photolysis ?
 - c) State laws of photochemistry.
- 5. a) Explain Chapman equation.
 - b) What are different types of molecular velocities ?
 - c) How dipole-dipole interactions differ from hydrogen bond interactions?

P.T.O.

F - 4686

I NAME AND A STATE OF A STATE OF

SECTION - B

Answer either a or b of each question. Each question carries 5 marks. (5x5=25 Marks)

- 6. a) Derive equation of state for real gases.
 - b) Explain the barometric method of determination of vapor pressure.
- a) Explain fluorescence and its quenching.
 - Explain Lindmann theory of unimolecular reactions.
- 8. a) How do we determine the activity and activity coefficients of electrolytes ?
 - b) Explain the effect of temperature and pressure on chemical equilibrium.
- 9. a) Explain BET theory.
 - b) Explain diffraction method of characterization of catalysts.
- 10. a) Explain quantum mechanical tunneling with examples.
 - b) Explain postulates of quantum mechanics.

SECTION - C

Answer any three questions. Each question carries 10 marks. (3×10=30 Marks)

- 11. Determine the eigenvalues and eigenfunctions of simple harmonic oscillator.
- 12. Explain any two methods for determining the surface area of solids.
- 13. Explain Maxwell relations and its significances.
- 14. Explain the kinetics of H_2 -Br₂ reaction.
- 15. Explain the method of determination of diameter of a molecule.

First Semester M.Sc. Degree Examination – Model question paper Branch III – Chemistry/ Branch IV – Analytical Chemistry CH/CL 213: PHYSICAL CHEMISTRY – I

(2020 Admission Onwards)

Time: 3 Hrs

Max. Marks: 75

SECTION A

Answer two among (a), (b) and (c) from each. Each sub question carries 2 marks

- 1. (a) Check whether the function e^{-x^2} is an eigen function for kinetic energy operator. If so what is the eigen value?
 - (b) Show that the momentum of particle in 1D box is quantised.
 - (c) Write the general expression for Hermitte polynomial. Deduce first two polynomials.
- 2. (a) Distinguish between associative and dissociative chemisorption.
 - (b) Under what condition can multilayer adsorption become more important than monolayer adsorption?
 - (c) Explain one method of determination of surface pressure.
- (a) Calculate ∆S of mixing when 2 moles of H₂, 3 moles of He and 2 moles of O₂ are mixed at fixed temperature assuming ideal behaviour and no chemical change.
 - (b) Write any two Maxwell's relations and give their significance.
 - (c) State 'Konowaloff's' rule.
- (a) Give two reasons to show that conventional techniques are not suitable for the study of kinetics of fast reactions.
 - (b) Explain steady state principle?
 - (c) How volume of activation affects the reaction rate?
- (a) Identify the symmetry elements present in the following and assign the point group
 - (i) H₂ (ii) HCl
 - (b) Explain improper axis of symmetry.
 - (c) Cyclic groups are abelian. Explain.

 $[2 \times 10 = 20]$

SECTION B

Answer either (a) or (b) from each question. Each sub question carries 5 marks

6. (a) For a particle in 3D box with $L_x = L_y = \frac{L_z}{2}$, what would be the energy when $n_x = 1$, $n_y = 2$ and $n_z = 2$ and when $n_x = 1$ $n_y = 1$ and $n_z = 4$. Use the calculations to explain the meaning of the term accidental degeneracy.

- (b) H(x) is written as a power series in x as $H(x) = \sum_{j=0}^{n} a_j x^j$. Derive recursion formula.
- 7. (a) Write any two methods for the determination of surface area of a solid.
 - (b) Explain Langmuir-Hinshelwood mechanism of surface catalyzed reactions.
- (a) Derive Van't Hoff isotherm. How is this useful in the study of chemical equilibria?
 - (b) Derive Gibbs-Duhem equation.
- 9. (a) Compare the rate constant as given by Arrhenius equation and collision theory and show that $E_a = E_0 + \frac{RT}{2}$
 - (b) Derive the rate law for the decomposition of N2O5.
- (a) Construct the group multiplication table for the symmetry operations of NH₃ molecule.
 - (b) Determine the number of active IR and Raman lines in the vibrational spectrum of POCl₃.

 $[5 \times 5 = 25]$

SECTION C

Answer any three questions. Each question carries 10 marks

- Set up the Schrodinger wave equation for a simple harmonic oscillator. Find the eigen functions and eigen values.
- 12. Explain any two instrumental techniques used for surface characterization.
- Write a brief account of the methods for the determination of activity coefficient of electrolytes and non-electrolytes.
- Explain chain reactions. Discuss Seminoff Henshelwood theory of branching chain reactions
- a) Explain the hybridization scheme in BF₃ molecule using group theory.b) Show that the four elements of C_{2v} point groups forms 4 classes?

						-		
D_{3h}	E	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_{\nu}$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A'_2	1	1	-1	1	1	-1	Rz	
E'	2	$^{-1}$	0	2	$^{-1}$	0	(x, y)	$(x^2 - y^2, xy)$
A_1''	1	1	1	-1	-1	-1		
A_2''	1	1	-1	-1	-1	1	z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

 $[10 \times 3 = 30]$